PHYSICAL REHABILITATION: FINDING A FIT WITH YOUR PRACTICE

Cory S. Sims, DVM, CCRP

“Rehabilitate” - re·ha·bil·i·tate
 o to restore to a former capacity: reinstate
 o to restore to a former state
 o to restore or bring to a condition of health or useful and constructive activity

re- "again" + habitate "make fit"

Goals of Rehabilitation Therapy
 o Restore the ability to perform activities of daily living after injury, illness or surgery
 o Manage the effects of chronic disease, including weakness and pain
 o Support the patient and maximize healing or abilities within the individual’s potential
 o Maintain quality of life and promote the human-animal-bond

Rehab is becoming standard of care
Increasing awareness/demand from owners
Your patients need rehab, your clients want it

Example conditions - Orthopedic
 o Cruciate disease – surgical or conservative
 o Coxofemoral disease – esp. OA, FHNE/FHO
 o Fractures (diaphyseal femoral fractures)
 o Elbow dysplasia
 o Biceps tendinitis
 o Gastrocnemius tear
 o Osteoarthritis
 o Sports injury
 o Limb loss/amputation +/- prosthetics

Example conditions - Neurologic
 o IVDD – surgical or conservative
 o Degenerative myelopathy
 o Brachial plexus injury
 o Inflammatory neuropathies (during recovery)

Example conditions - Other
 o Dental
 o Myopathies/myositis
 o Oncologic pain and supportive care
 o Wound management
 o Obesity

Conditions Rehab can’t fix
 o Loss of limb function due to neuronal death
 o Conformational abnormality/ies
o Chronic nonunion due to inadequate fracture stabilization or infection

o Medial patellar luxation without surgical correction

o Joint derangement (failure of more than one structure)

o Mature contracture

o Complete tendon rupture without surgical correction

Response of tissues to injury or disease
Injury/OA/surgery → Pain/weakness
 +/- immobilization (iatrogenic)
 +/- activity restriction → DISUSE

Sequelae of disuse:
o Muscle atrophy
o Soft tissue fibrosis
o Decreased joint fluid viscosity
o Thinning/softening of the articular cartilage
 (Weight gain)
 (Increased pain)

Tools of Rehabilitation Therapy
Any modality or activity that achieves our goals through:
o Pain control
o Reduction of inflammation or edema
o Improved tissue strength, mass or function
o Prevention or delay of further injury or disease

Use of Cold (“cryotherapy”)
Most useful during the peracute and acute phases of healing (immediately through ~72 hours)
o Vasoconstriction
o Reduced metabolic rate
o Decreased nerve conduction velocity
o Decreased edema
o Decreased muscle spasm

Use of Heat (“thermotherapy”)
Most useful during the subacute & proliferative phases of healing (after ~72 hours)
o Vasodilation
o Smooth muscle relaxation
o Increased nerve conduction velocity
o Elevation of the pain threshold (gate control mechanism)
o Increased oxygenation of tissues
Increased metabolic rate (cell turnover)
Increased tissue extensibility (stretching)

Exercise Therapy
Movement:
- decreases pain
- improves joint health
- decreases edema
- prevents fibrosis/contracture

Therapeutic exercises
- PROM
- Supported stands
- Weight-shifting
- STS
- Cavaletts
- Tunnels

Exercise selection
- Purpose/goal of the specific exercise
- Musculoskeletal dynamics
- Technique
- Contraindications & Possible complications
- Motivating the patient

Underwater Treadmill (UWT)
- Allows movement in a controlled & protected fashion
- Buoyancy
- Resistance
- Increased reaction time
- Reduced risk of falls
- Exaggerated movements – greater ROM
- Hydrostatic pressure

Considerations
- Type and degree of injury/debilitation
- Stability and type of surgical repair
- Surgeon preference
- Owner compliance
- Goals of therapy
- Patient temperament
- Patient size
- Physical access
 - IV lines
 - U-cath
 - Bandages/splints/casts
 - Mobility devices
- Level of staff support
- Knowledge
- Experience
- Physical demands
- Time demands

Other Tools
- Laser
- Electrical stimulation
 - Neuromuscular electrical stimulation (NMES)
 - Transcutaneous electrical nerve stimulation (TENS)
- Acupuncture
- Extracorporeal shock wave
- Massage
- Stretching
- Joint mobilization
- Carts/harnesses
- Prosthetics
- Orthotics/braces
- Restricting bands
- Booties

Setting the patient/client up for success
- Non-stressful environment
- Avoid fatigue or pain
- Incorporate activities into the current routine
- Minimize novelty
- Use readily available/inexpensive equipment

Accurate & Effective Communication is Essential
- Careful, thorough demonstration (& ideally a written description) of the activities
- What to expect during the exercises
- How often, how many, how much
- Realistic goals for final outcome
- Basic understanding of relevant anatomy
- When to avoid or stop an activity
- Timeline until next appointment or assessment

When does professional rehab end?
- When mobility is restored to a degree that allows for activities of daily living
- When risk of injury or surgical failure is reduced to the level that exercise therapy can be carried out at home
- When pain is controlled
- When ideal body weight is achieved
- When other goals based on objective measures are met

Depends on the patient/condition/client
For some conditions, long-term rehab is indicated
The decision is made jointly, relying heavily on owner input
Measuring Outcomes
Degree of disability & response to therapy
- Pain score
- Radiographic imaging
- Owner assessment (CBPI)
- Muscle mass/girth
- Goniometry
- Video/still images
- Activity monitors
- Weight/BCS
- Behavior (e.g. use of a muzzle)

Pain scale based on palpation
0 - No resentment; normal amount of movement or wriggling
1 - Mild withdrawal; mildly resists
2 - Moderate withdrawal; body tenses; may orient to site; may vocalize / increase in vocalization
3 - Orient to site; forcible withdrawal from manipulation; may vocalize or hiss or bite
4 - Tries to escape / prevent manipulation; bite/hiss; marked guarding of area

When to Refer
- Severe debilitation
- Non-ambulatory patients
- Multiple conditions/multifocal disease
- >50 lbs (20 Kg)
- Certain breeds
- Client limitations
- NWB after the first 7 (3?) days
- Home exercises not sufficient or not effective
- Long-term care

Referring to NC State
- Cost of treatment depends on the condition being treated & the intensity and duration of therapy
- Initial exam fee with periodic reassessments
- Treatment plan is based on our patient assessment, not the diagnosis
- Treatment for chronic conditions will be ongoing
- YES! We treat cats
- Inpatient therapy/boarding is an option
- Fax or provide client a copy of records, including images & a list of medications/supplements
- We occasionally recommend consultation with a specialist, but an effort is made to consult with the primary DVM first
- We do not provide wellness services and refer back for diagnostics, procedures, non-rehab illness
- We will update both client and veterinarian after initial visit and each reassessment
- Updates by phone or email are available ANY time

The First Visit
- Initial assessment takes about an hour
- We prefer owners to be present
- We will occasionally keep the patient for UWT trial or initial treatment same day

Routine Therapy Sessions
- Drop-offs
- Mini-sessions separated by rest periods to avoid fatigue
- Reassessments to objectively evaluate the response to therapy are performed at regular intervals, **and** when there is a change in patient status or a new problem is identified or at the request of the client or referring clinician
References

Goniometry
Reliability of goniometry in Labrador Retrievers
Gayle Jaegger, DVM; Denis J. Marcellin-Little, DEDV; David Levine, PhD,PT
American Journal of Veterinary Research 2002;63:979–986

Measurement of angles of abduction for diagnosis of shoulder instability in dogs using goniometry and digital image analysis
James L Cook, DVM, PhD, Diplomate ACVS, Daniel C. Renfro, DVM, James L. Tomlinson, DVM, MVSc, Diplomate ACVS, and Jill E. Sorensen, CVT
Veterinary Surgery 2005;34:463–468

Sequelae of Disuse
The reaction of articular cartilage to injury and osteoarthritis
Manjin H
New England Journal of Medicine 24:1285-1292

Correlation between canine hip dysplasia and pelvic muscle mass: a study of 95 dogs
W.H. Riser, J.F. Shirer
American Journal of Veterinary Research; 28: 769–777

Cartilage atrophy induced by limb immobilization

Metabolic consequences of muscle disuse atrophy
T. P. Stein3 and C. E. Wade*
The Journal of Nutrition 2005;135 no. 7:1824S-1828S

The effect of mobilization on the vascularization of healing flexor tendons in dogs
R. Gelberman
Clin Orthop Rel Res, 1980;153;283-289

The effect of continuous passive motion on the healing of articular cartilage defects
R. Salter
Journal of Bone and Joint Surgery, 1975;57A:570

Effects of immobilization on joints
W.H. Akeson
Clin Orthop, 1987;219:28-37

Pain scoring & Assessment
Evaluation of construct and criterion validity for the ‘Liverpool Osteoarthritis in Dogs’ (LOAD) clinical metrology instrument and comparison to two other instruments
Myles Benjamin Walton, Emily Cowderoy, Duncan Lascelles, John F. Innes
PloS one, ISSN 1932-6203, 2013, Volume 8, Issue 3, p. e58125
Development and psychometric testing of an instrument designed to measure chronic pain in dogs with osteoarthritis
by Brown, Dorothy Cimino; Boston, Raymond C; Coyne, James C; Farrar, John T

Comparison of Force Plate Gait Analysis and Owner Assessment of Pain Using the Canine Brief Pain Inventory in Dogs with Osteoarthritis
D.C. Brown, R.C. Boston, J.T. Farrar
Journal of Veterinary Internal Medicine, January/February 2013;Volume 27, Issue 1, pages 22–30

Pain management
Managing pain in feline patients
Sheilah A. Robertson, BVMS, PhD, MRCVS

Physical rehabilitation and acupuncture as tools of multimodal pain management in working dogs
B. Pierce
Journal of Veterinary Behavior: Clinical Applications and Research, ISSN 1558-7878; 2009, Volume4, Issue 6, pp. 243 – 244

The evaluation of extracorporeal shockwave therapy in naturally occurring osteoarthritis of the stifle joint in dogs
J. Dahlberg, G. Fitch, R. B. Evans, S. R. McClure, M. Conzemius
Vet Comp Orthop Traumatol;3/2005:147-152

Low level laser therapy in the management of neck pain
Mario F. P. Peres & Giancarlo Lucchetti

Thermotherapy and Cryotherapy
The effect of cryotherapy on nerve conduction velocity, pain threshold and pain tolerance
A.A. Agafly, K.P. George
British Journal of Sports Medicine, 2007;41:365-369; discussion 369

Effect of cold compression therapy on postoperative pain, swelling, range of motion and lameness after tibial plateau leveling osteotomy in dogs
Journal of the American Veterinary Medical Association, 2011;238:1284-1291

The effect of heat on tissue extensibility: a comparison of deep and superficial heating
V.J. Robertson, A.R. Ward, P. Jung
Archives of Physical Medical Rehabilitation, 2005;86:819-825

The physiologic basis and clinical applications of cryotherapy and thermotherapy for the pain practitioner
S.F.Nadler, K. Weingand, R.J. Kruse
Pain Physician, 2004;7:395-399

Underwater Treadmill
The principles and properties of water
In: Aquatic Exercise Therapy. Philadelphia: W.B. Saunders, 24

Joint kinematics of dogs walking on ground and aquatic treadmills
Proceedings of the 2nd International Symposium on Rehabilitation and Physical Therapy in Veterinary Medicine, Knoxville, TN, 2002: p.191

Incorporation of exercise, using an underwater treadmill, and active client education into a weight management program for obese dogs
Anne Chauvet, Jim Laclair, Denise A. Elliott, Alexander J. German
The Canadian veterinary journal. La revue vétérinaire canadienne, ISSN 0008-5286, 05/2011, Volume52, Issue 5, pp. 491 – 496

Lean body mass increases following 12-week aerobic exercise training with underwater but not land treadmill
by Greene, ES; Greene, NP; Caruhn, AF; Green, JS; Crouse, SF
MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, ISSN 0195-9131, 05/2008, Volume 40,Issue 5, p. S172

Effect of water depth on amount of flexion and extension of joints of the distal aspects of the limbs in healthy horses walking on an underwater treadmill
Jose L. Mendez-Angulo, DVM, MS; Anna M. Firshman, BVSc, PhD; Donna M. Groschen, BS; Philip J. Kieffer, DVM; Troy N. Trumble, DVM, PhD
American Journal of Veterinary Research, April 2013, Volume 74; No. 4: pp557-566

Rehab of the stifle
Long-term outcomes of thigh circumference, stifle range-of-motion and lameness after unilateral tibial plateau leveling osteotomy
by E. M. Moeller; D. A. Allen; E. R. Wilson; J. A. Lineberger; T. LehenbauerVeterinary and Comparative Orthopaedics and Traumatology (VCOT), ISSN 0932-0814, 2010, Volume 23, Issue 1, pp. 37 - 42

Effects of postoperative rehabilitation on limb function after cranial cruciate ligament repair in dogs
Gregory S. Marsolais, BS Glenda Dvorak, DVM Michael G. Conzemius, DVM, PhD, DACVS
Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010. (Marsolais, Dvorak, Conzemius)

A preliminary study of early physical therapy following surgery for cranial cruciate ligament rupture in dogs

Joint kinematics of dogs walking on ground and aquatic treadmills.
Proceedings of the 2nd International Symposium of Rehabilitation and Physical Therapy in Veterinary Medicine
Knoxville, Tenn. : University of Tennessee College of Veterinary Medicine, University of Tennessee at Chattanooga, Program in Physical Therapy, and University of Tennessee Department of Conferences, [2002]

General
Introduction to Veterinary Physical Rehabilitation
Osteoarthritis in Cats: A More Common Disease Than You Might Expect
by Carmela Stamper, DVM, Communications Staff; FDA Veterinarian Newsletter 2008 Volume XXIII, No II

Rehabilitation for the Neurologic Patient
Natasha Olby, Vet MB, PhD,*a, Krista B. Halling, DVMB, Teresa R. Glick, PTc
Veterinary Clinics of North America: Small Animal Practice

The canine shoulder: selected disorders and their management with physical therapy
Denis J. Marcellin-Little, DEDV, David Levine, PT, PhD, and Sherman O. Canapp, Jr., DVM, MS
Clinical Techniques in Small Animal Practice