Macaca fascicularis
- Pointed crest at crowns of head
 - Females have beards
- Females 2.5-5kg, Males 4.5-8kg
- Inhabit coastal areas of SE Asia
- Good swimmers
- Omnivorous-insects, crabs, fish, veggies etc
- Non seasonal breeders
- 28d menstrual cycle
- Gestation period 163.5d
- Interbirth interval 390d
- Sexual maturity 3.5y
- Live in male dominated multimale-multifemale groups

Macaca mulatta-Rhesus monkey
- Native to India and China
- Females: 4.5-11kg, Males: 5.5-12kg
- Shorter tails than cynomolgus
- Generally considered frugivorous or vegetarian
- Seasonal breeders: Sept-Feb in Northern hemisphere
- Often have red-tinged skin
- Females: skin swelling on the face, arms legs and perineal region
- Live in male dominated multimale-multifemale social groups
- Gestation period 164d
- Interbirth interval: 360d
- 93.45% genetic homology to humans
- Popular model for HIV/SHIV research

Macaca nemestrina- Pigtail Macaque
- Used as a model for Kyasnr Forest disease and reproductive biology

Macaca radiata- Bonnet monkey
- Native to India and China
- Females: 4.5-11kg, Males: 5.5-12kg
- Shorter tails than cynomolgus
- Generally considered frugivorous or vegetarian
- Seasonal breeders: Sept-Feb in Northern hemisphere
- Often have red-tinged skin
- Females: skin swelling on the face, arms legs and perineal region
- Live in male dominated multimale-multifemale social groups
- Gestation period 164d
- Interbirth interval: 360d
- 93.45% genetic homology to humans
- Popular model for HIV/SHIV research

African Species of OWM
- Cercopithecus aethiops- Sootey Mousailey
- Chlorocebus aethiops- West African green monkey, vervet, guenon
- Papio anubis- Olive Baboon
Old World Monkey Viruses

- **Retroviruses**
 - Simian Immunodeficiency Virus (SIV)
 - Simian T cell Lymphotrophic Virus (STLV)
 - Simian Foamy Virus (SFV)
- **Herpes Viruses**
 - Macacine herpes virus 1
 - Aka- Herpes B
 - Aka- Cercopithicine Herpesvirus 1
 - Cercopithicine Herpesvirus 2 (aka SAB)
 - Simian Varicella Virus
- **Hemorrhagic Viruses**
 - Ebola, Marburg
 - Simian Hemorrhagic Fever Virus
- **Pox Viruses**
 - Monkey Pox
 - Measles Virus

Old World Monkey Retroviruses

- **Retroviridae**
 - Orthoretrovirinae
 - Betaretrovirus
 - Simian Retrovirus Type D (SRV)
 - Deltaretrovirus
 - Simian T Cell Lymphotrophic Virus (STLV)
 - Lentivirus
 - Simian Immunodeficiency Virus (SIV)
 - Spumavirinae
 - Simian Foamy Virus (SFV)

Retrovirus Information Table

<table>
<thead>
<tr>
<th>Retrovirus</th>
<th>Host Species</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simian T-lymphotrophic Virus</td>
<td>African monkeys and apes</td>
<td>Subclinical Lymphoproliferative disease T-cell Lymphoma</td>
</tr>
<tr>
<td>(STLV) - Betaretrovirus</td>
<td>Asian monkeys and apes</td>
<td></td>
</tr>
<tr>
<td>Simian Retrovirus type D</td>
<td>Asian Monkeys (Macaco)</td>
<td>Subclinical Severe Immunodeficiency</td>
</tr>
<tr>
<td>(SRV) - Betaretrovirus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simian Immunodeficiency Virus</td>
<td>African monkeys and apes</td>
<td>Subclinical Rare Immunodeficiency</td>
</tr>
<tr>
<td>(SIV) - Lentivirus</td>
<td>New World monkeys</td>
<td></td>
</tr>
<tr>
<td>Simian Foamy Virus (SFV)</td>
<td>African monkeys and apes</td>
<td>Subclinical</td>
</tr>
<tr>
<td>- Spumavirus</td>
<td>Prosimians</td>
<td></td>
</tr>
</tbody>
</table>

SRV

Clinical signs
- Viral induced immune suppression
- Opportunistic infections
- Anemia, weight loss, persistent unresponsive diarrhea
- Retroperitoneal fibromatosis mass lesions
 - Retropertoneal sarcoma, undifferentiated sarcoma
 - Presumed associated with a gamma herpes virus (rhesus rhadinovirus, or retroperitoneal fibromatosis herpes virus (RFHV))
 - Model for Kaposi’s Sarcoma in humans
- Noma- severe ulcerative necrotizing gingivitis, periodontitis with osteonecrosis

Impact on Research
- Immune suppression or modulation
- Interpretation of histology and clinical pathology
- Animals may become ill

SRV

- Simian Type D Retrovirus
 - Retroviral pathogen of macaque species
 - Classified:
 - Family retroviridae
 - subfamily orthoretrovirus
 - Genus betaretrovirus
 - 5 distinct serotypes
 - All have been isolated from macaques
 - SRV-1- rhesus
 - SRV-2- cyno, pigtail
 - Pleotropic for many cell types and tissues
 - Transmission considered to be horizontal and possibly by contaminated fomites

Lymphoid follicle in kidney

Lymphoid hyperplasia in spleen
Retroperitoneal Fibromatosis

• Detection can be problematic
 – Three possibilities after infection:
 • Some mount and maintain a robust antibody response but virus and disease are undetectable
 • Viremic without detectable antibody levels
 • Others fall somewhere in between
 – Carriers with undetectable antibody levels
 – Clinical disease

• Essential to test both for antibodies and actual virus
• Antibody screening determines presence of SRV of the population
• Viral detection in individuals is important for eliminating the virus from a population
 – Real time PCR test to detect SRV 1-5 serotypes SRV

STLV

• Simian T-cell Lymphotrophic Virus
 – Orthoretrovirus, deltaretrovirus
 – NHP counterpart to Human T-cell lymphotrophic virus (HTLV)
 • Collectively STLV and HTLV are now referred to as Primate T Cell Leukemia virus (PTLV)
 – Natural host- African and Asian monkeys and Apes
 – Seroprevalence estimates in captive populations noted between 3-12% (Lerche 2003)
 – Highly cell associated- CD4+ and CD8+
 – Transmission thought to occur by
 • Semen and cervical secretions
 • Breast milk during nursing

STLV

• Clinical Disease
 – Most infections are clinically silent
 – STLV related disease most commonly reported in African species (AGM, Baboon and Gorilla)
 • Anorexia, depression, LN enlargement and hepatosplenomegaly
 • Lymphoma, leukemia

• Diagnostics
 – Antibody testing
 • Using STLV or HTLV cross reactivity antigens
 – PCR
 • Primers created from the tax gene region
 • Identified based on homology between HTLV and STLV

Simian Immune deficiency Virus

• Retrovirus, subgroup lentivirus
 – Closely related to HIV-1
 • Natural hosts include many African species of monkeys and Chimpanzees.
 • Infection in these species rarely causes disease.
 – No reports of naturally SIV positive macaques
 • Positive macaques
 – Experimentally infected
 • Model of HIV/AIDS
 – Pigtailed, rhesus
 – Accidentally housed with infected animals
 • African species (Cerocebus)
 • Experimentally infected macaques

Simian Immune deficiency Virus

• Severe immune deficiency and disease in macaque species
 – Decrease in CD4+ T cells
 – Anemia, lymphopenia
 – Opportunistic infections
 – Lymphoma
• Potential confounding effects on research
• Diagnostic testing
 • Testing for proviral DNA is available real-time PCR
 • Antibody screening
 • ELISA, Western
Herpes viruses

- Double stranded DNA viruses
- 3 subfamilies
 - Alphaherpesvirinae
 - Betaherpesvirinae
 - Gammaherpesvirinae

Macacine herpesvirus 1

- Cercopithecine herpesvirus 1
 - Macacine herpesvirus 1
 - Aka Herpes B virus, Cercopithecine herpesvirus 2
 - Alphaherpesvirus
 - Same family as human herpes simplex viruses
- Clinical Disease
 - Typically asymptomatic in macaque species
 - Occasionally may see oral or genital lesions
 - Transmitted horizontally in oral or genital fluids
 - Primary infection controlled, virus invades the axons, travels to the sensory ganglions for latent lifelong infection.
 - Occasionally will reactivate and be shed from mucosal surfaces.
 - Occasionally may cause disseminated infection in immunosuppressed macaques.
- Can cause fatal infections in people or other aberrant primate species

Simian Varicella Virus

- Cercopithecine herpesvirus 9
 - Alpha herpes virus
 - Closely related to human varicella zoster virus
- Acute disease will usually resolve within 21d
 - Rash, depression, dyspnea
- Lesions
 - Multifocal vesicles on skin, oral and esophageal mucous membranes
 - Focal necrosis in liver, lung, spleen, lymph nodes, adrenal, bone marrow, and intestinal tract
 - Herpetic inclusion bodies at the margins of lesions
- Develop immunity to subsequent SVV infection
 - Remain latently infected in neural ganglion and may have reactivation disease when immune suppressed

Betaherpesvirinae

- Macacine herpesvirus 3 (Rhesus cytomegalovirus)
 - Narrow host range
 - Commonly occurs but rarely causes clinical disease
 - Most animals are seropositive by 1 year of age
 - Transmitted in milk, blood, saliva, urine and semen
 - Clinical disease associated with intrauterine infections and immunosuppressed patients
 - Reactivation of virus during immune suppression may result in encephalitis, enteritis, lymphadenitis or fata disseminated disease
 - Valganciclovir may be beneficial
 - Histology: large cytomegalic cells with intranuclear and intracytoplasmic inclusions

Gammaherpesvirinae

- Lymphocryptovirus
 - Macacine herpesvirus 4, Rhesus lymphocryptovirus
 - Related to Epstein-Barr virus
 - Species specific
 - May cause lymphoid and epithelial proliferative lesions
 - Co-infection with SV associated with malignant B cell lymphomas oral lesions (hairy leukoplakia)
 - Diagnosis by serology or PCR
- Rhadinovirus
 - Rhesus rhadinovirus and Retroperitoneal fibromatosis herpesvirus
 - Widespread in macaque colonies, not usually associated with disease
 - B8HV-
 - Associated with SRV infection and the mesenchymal proliferative lesion known as retroperitoneal fibromatosis
 - Associated with GI stromal cell tumors and SV infection
Filoviruses

- Ebola virus, Marburg virus
 - Single stranded enveloped RNA viruses
- Indigenous to Africa
 - Discovered in 1976 - Democratic Republic of the Congo
- Exact origin, location, natural habitat and reservoir remain unknown
 - Fruit bats (Rousettus aegyptiacus) may be reservoir host
- Cause severe hemorrhagic disease in humans and primates
 - Sporadic outbreaks mainly restricted to Africa
- Main incentive for the Center of Disease Control (CDC) primate import requirements
 - Stringency increased following Ebola Reston incident 1990
 - Disease control measures to protect personnel
 - Requires specialized containment facility
 - Must test any animal that dies (for any reason) during quarantine for filovirus antibodies in serum and antigen from liver tissue

Simian Hemorrhagic Fever Virus (SHFV)

- Simian Hemorrhagic Fever Virus (SHFV)
- Arterivirus - RNA, enveloped
 - First isolated in 1964, after devastating outbreaks of hemorrhagic fever in colonies of captive macaque monkeys (Palmer et al., 1968; Tauraso et al., 1968).
 - Endemic among several genera of African monkeys, in which it causes an asymptomatic persistent infection (London, 1977; Gravell et al., 1986b).
 - Macaque species have an unusual sensitivity to SHFV with the mortality of disease approaching 100%
 - Bleeding diathesis progressing to death
 - Distinguishing lesion - hemorrhagic necrosis of the proximal duodenum
- SHFV transmission from African monkeys to macaques most likely occurs due to accidental transmission during co-housing.
- Main incentive for separation of African and Asian primate species for housing and handling.

Monkey Pox

- Monkey Pox Virus
 - Orthopoxvirus - large DNA virus
 - Same family as smallpox, vaccinia, cowpox
 - First discovered in laboratory monkeys in 1958
 - Native to central and west Africa
 - Reservoir host:
 - African Rodents
- Infects people and NHPs, causes sporadic disease
- Clinical signs include:
 - Cutaneous papules/pustules, “pock lesions”
 - Lymphadenopathy, oral ulcers, fever
- Infection confers life long immunity
- Vaccina or smallpox vaccine effective

Measles Virus

- Genus - Morbillivirus, Family - Paramyxovirus
 - Same virus family as canine distemper virus
- Humans and non-human primates are the only known hosts
- Primates contract the virus from humans
- Highly contagious via respiratory aerosols, not fomites
 - Virus is not stable in the environment
- Recovery from natural infection confers lifelong immunity
Measles Virus

- Hallmark lesion: Koplick spots
 - Usually occur prior to rash and illness
 - White, red-rimmed spots on oral mucosa
- Pathology
 - Pneumonia is the classic lesion
 - Acute bronchiolitis with characteristic multinucleated giant cells
 - Rarely see intranuclear and intracytoplasmic inclusions

Vaccination
- Only one vaccine in use for humans since 1954
- Modified live attenuated virus
- Only one serogroup, genetically stable virus and vaccine
 - Few products available for NHPs
- Human vaccines are effective
 - Are usually multivalent (contain other viruses)
 - Expensive
 - “Vanguard”: Canine distemper vaccine + Measles Virus
 - Efficacy questionable
 - Availability unreliable
 - Vaccination should occur after maternal antibodies wane
 - Vaccine can cause transient immunosuppression
- Prevention
 - Screen and vaccinate humans that come in contact with NHPs

Bacterial Pathogens

- Respiratory
- Gastrointestinal

Structure of Bacteria

Essential structure:
- Cell wall
- Cell membrane
- Cytoplasm
- Nuclear material

Types of structures:
- Capsule
- Flagella
- Pili
- Spore

Tuberculosis

- Agent
 - Mycobacterium tuberculosis is most common
 - M. bovis, M. africanum is occasionally reported
- Route of infection
 - Inhalation of organism
 - Exposure to infected humans or other NHPs
- Clinical signs:
 - Weight loss, anorexia, lethargy
 - Coughing, dyspnea, cyanosis
 - Asymptomatic
- PE findings
 - Lymphadenopathy, splenomegaly or hepatomegaly
- Pathology
 - Caseous nodules: LN, lung
 - Tubercles: lungs, thoracic pleura
 - Military disease or foci of caseation in spleen, liver, kidney

Tuberculosis - Diagnostics

- Intradermal TB Skin Test (TST)
 - 0.1ml Mammalian Old Tuberculin
 - Score for signs of delayed-type hypersensitivity
 - 48 to 72 hours post administration
 - Grade based on induration and erythema: 1-5 subjective scale
 - Ineffective in immune compromised or suppressed animals
- INF-γ Release assay - “Primagam”
 - In-vitro
 - Still relies on an intact/functional immune system
 - More quantitative than the TB skin test - but still lacks specificity and sensitivity
- Antibody detection
 - ELISA, MAMA, Lateral Flow
- PCR
 - Relies on more invasive samples: gastric or BA lavage, tissues
- Gold standard remains bacterial Culture
 - Fastidious organism - difficult to grow
 - Takes 6-8 weeks
 - Special medium?
Other Bacterial Respiratory Pathogens

• *Streptococcus pneumoniae*
 - Normal commensal of upper respiratory tract of healthy macaques
 - Opportunistic pathogen
 - Gram-positive cocci in short chains or pairs
 - Severe fibropurulent pneumonia

• *Klebsiella pneumoniae, Bordetella bronchiseptica, Pasteurella multocida*
 - Gram negative rods
 - Opportunistic commensal organisms
 - Fibropurulent pneumonia or bronchopneumonia

• *Moraxella catarrhalis*
 - Gram-negative diplococcus
 - Normal commensal organism of the nasal passage

Clinical Signs

• Epistaxis, sneezing, peri-orbital swelling
• “Bloody nose syndrome of cynomolgus macaques”
 - May be associated with low humidity
 - Responsive to treatment with Penicillin

Enteric Bacterial Diseases

• *Salmonella*

• *Shigella*

• *Campylobacter*

• *Yersinia*

• *Helicobacter*

Salmonellosis

• Gram negative bacteria.
 - *Salmonella enterica*

• Clinical disease in NHP
 - Humans are the main reservoir
 - Fecal-oral transmission, contaminated food
 - Can be asymptomatic with clinical signs precipitated by stress
 - Diarrhea, enteritis, septicemia, edema, and variable mortality
 - High percentage of survivors become carriers

• Diagnosis
 - Fecal culture with selective media
 - Serotyping may be useful for epidemiologic investigation

• Treatment
 - Fluoroquinolones and third-generation cephalosporins, fluid therapy
 - Many antibiotic resistant isolates
 - Zoonotic

Shigellosis

• *Shigella flexneri*
 - Gram negative bacterial rod

• Fecal oral transmission, contaminated food or water, fomites

• Shed from clinically ill or asymptomatic humans and NHP.
 - Only minimal contact is necessary for transmission.
 - Recovered animals often are carriers and serve as a reservoir of infection
 - High mortality is possible

• Diagnosis
 - Isolation of Shigella sp. from fresh rectal swabs, sequential samples recommended
 - PCR of fecal samples

• Pathology
 - Cecum and colon, fibrinopurulent exudate, pseudomembranous enterocolitis
 - Treatment:
 - Fluids, electrolytes, and antibiotics (fluoroquinolones)

Campylobacter jejuni

• Gram-negative microaerophilic, bacteria

• Fecal-oral transmission

• Clinical signs:
 - Asymptomatic carriers are common
 - Watery diarrhea, sometimes hemorrhagic
 - Dehydration
 - Associated with abortions

• Pathology
 - Edematous, reddened, roughened, proliferative hyperplasia small intestine and/or colon

• Diagnosis: Rectal culture
 - Selective CAMP media

• Treatment:
 - Usually self-limiting
 - Severe or prolonged cases may require ciprofloxacin, erythromycin, azithromycin or norfloxacin

Yersiniosis

• *Yersinia enterocolitica, Yersinia pseudotuberculosis*
 - Gram negative rod shaped facultative anaerobe

• Fecal-oral transmission

• Animals that recover may become asymptomatic carriers

• Increased incidents in wet/cold months

• Clinical Symptoms:
 - Diarrhea, lethargy, dehydration, abdominal pain, chronic lymphadenopathy, sudden death

• Pathology
 - Hepatic, splenic necrosis
 - Abscessation of mesenteric lymph nodes and organs
 - Ulcerative enterocolitis

• Diagnosis:
 - Fecal culture-hard to isolate
 - Fecal PCR

• Treatment: Aggressive antibiotic therapy
 - Fluoroquinolones, aminoglycosides, TMS
Helicobacteriosis

- **Agent:** Helicobacter pylori
- **Transmission:** oral
- **Clinical signs**
 - Often no detectable signs
 - High prevalence if infected rhesus in captivity
 - Vomiting, abdominal discomfort
 - Chronic gastritis, gastric ulceration
- **Diagnosis**
 - PCR
 - Serology
 - Silver stain of tissues samples
- **Pathology**
 - Mononuclear inflammatory cell infiltrate in lamina propria – antrum and body of stomach
 - Lymphocytic plasmocytic gastritis
 - Treatment:
 - *triple therapy*: metronidazole, bismuth subcitrate, tetracycline
 - Other antibiotics
 - cephalosporins, penicillin, amoxicillin

E. Arifin, 2007

Mycotic and Parasitic Diseases

- **Pneumocystis**
- **Coccidiomycosis**
- **Chaga’s Disease**

Pneumocystis spp

- **Pneumocystis carinii**
 - Ubiquitous in the environment
 - 95% healthy asymptomatic cynomolgus monkeys had antibodies to Pneumocystis (Kling, 2009)
- Disease often associated with other debilitation
 - Recent importation, bacterial infection, neoplasia, immunodeficiency
- **Clinical signs**
 - Weight loss, anorexia, pyrexia, dyspnea, cyanosis, polycythemia
 - Radiographs: extensive infiltrates in lung lobes
- **Diagnosis**
 - Serology or PCR
 - Silver or PAS stain of sputum or biopsy
- **Treatment**
 - TMS

Coccidiomycosis

- **Coccidioides immitis**
 - Saprophytic, dimorphic, fungi
 - Endemic to southwestern US and South America
 - California, Texas, Arizona
- **Transmission via aerosolization from the environment**
 - Not contagious between animals
- **Clinical signs**
 - Respiratory: nasal discharge, cough, dyspnea
 - Firm white nodules, cavitating lesions in lungs
 - Neurologic: paralysis
 - Paravertebral masses or abscesses, lysis of vertebral bodies
- **Diagnosis**
 - Cytology, Serology
 - Histology with GMS
- **Pathology**
 - Pyogranulomatous, multinucleated giant cells, thick walled spherules w/endospores
Chaga’s Disease

- Trypanosomiasis
 - Hemoflagellate, protozoal parasite
- Transmission
 - Intermediate host required: Triatomid insects (Reduviid bugs, kissing bugs)
 - Bite or contamination of open wounds with insect droppings, or ingestion of infected insects
- Epidemiology
 - South and Central America, Southern US
- Clinical Disease
 - Asymptomatic, lethargy, anorexia
 - Cardiopathies
 - Arrhythmias and conduction abnormalities
 - ECG abnormalities: Right Bundle Branch Block
 - Heart Failure
 - Biventricular congestive heart failure
 - peripheral edema, hepatomegaly, pulmonary congestion and dyspnea
- Pathology
 - Amastigotes in cardiac or skeletal muscle
 - Lymphoplasmacytic inflammation, fibrosis, degeneration

Prevention/Exclusion
- Diagnostics
 - Serology, PCR
 - Culture-blood, cell culture
 - Microscopy: blood smears, histopathology
- Treatment
 - Two drugs—Benznidazole and Nitfurtoxin
 - Not FDA approved
 - Difficult to access in US
 - May not be that effective in chronic stages
- Control of Environment
 - Removal of plants near the cages
 - Rodent and insect control
- Screen
 - Cull or don’t accept positives
 - Randomize across experimental groups in study design

Other Macaque Diseases

Fatal Fasting Syndrome of Obese Macaques

- Etiology:
 - Stressors: such as a change in husbandry procedures, new social pairing or other underlying disease process resulting in anorexia
 - Obese, middle aged, females > males
 - Synonyms: Fatal fatty liver syndrome, Fat macaque syndrome, hepatic lipidosis
 - Similar disease seen in several other species
 - Cats, Cows (fat cow syndrome), Ponies (hyperlipidemia), Guinea pigs, woodchucks
- Clinical Disease
 - Severe acute weight loss, anorexia, lethargy
 - Azotemia
 - Hepatomegaly
- Diagnosis
 - Clinical signs and lab results
 - US-diffuse increase in echogenicity
 - Biopsy
- Pathogenesis: not well understood
 - Negative energy balance and weight loss → fatty acid mobilization from fat depots → fatty changes in liver and kidney
 - Renal and hepatic lipidosis are hallmarks
- Treatment
 - Supportive care: nutritional support, IV fluid therapy, glucose/insulin management

Endometriosis

- Pathogenesis
 - Deposition/proliferation of functional endometrial tissue outside of the uterus
 - Retrograde ovulation
 - “seeding of the abdomen during laparotomy (especially hysterotomy)
- Clinical disease
 - Abdominal pain, inappetence—coincides with monthly menses
 - Irregular menses
 - Anemia
 - Palpable abdominal mass, cysts
- Diagnosis
 - Ultrasound, radiographs
 - Fine Needle Aspiration of mass
 - “chocolate fluid”
 - Cytology: degenerate RBCs, Hemosiderin laden macrophages, necrophils
- Treatment
 - Surgical resection, ovarioectomy, hysterectomy
 - Progesterone to control menstrual cycle
 - Gonadotropin releasing hormone agonists—halts menstrual cycle
 - Pain Management
Amyloidosis

- Pathologic deposition of 7S residue N-terminal fragment of serum amyloid A (SAA) protein
 - Associated with chronic inflammation
- Liver, GI tract, spleen, kidney

- Clinical signs:
 - Asymptomatic
 - Nonspecific: Cachexia, weakness, weight loss, syncope, recurrent diarrhea, hepatomegaly, anemia
- Clinical pathology: Hypoproteinemia, hypalbuminemia, elevated liver enzymes
 - Renal: Proteinuria, nephrotic syndrome, renal failure, uremia
- Cardiac: Congestive heart failure, arrhythmias
 - GI: malabsorption, diarrhea, disturbances in digestion
 - Death

- Diagnosis: morphologic identification on biopsy specimens
 - Gross: enlarged, firm, waxy organs that are yellow on cut surface
 - Histology: Congo red stain to differentiate from other hyaline deposits; high specificity, low sensitivity; electron microscopy

- Prognosis: poor with generalized amyloidosis
 - Grave for clinically ill nonhuman primates with secondary hepatic amyloidosis

Intestinal Adenocarcinoma

- Clinical
 - Aged, rhesus monkeys
 - Positive correlation established between age and intestinal cancer in rhesus monkeys
 - Closer to 30 years old, the more likely
 - Up to 20% incidence rate recorded in some aged rhesus colonies
 - Generalized weight loss, minimal stool production or diarrhea
 - Mild to moderate microcytic hypochromic anemia, thrombocytosis
 - Fecal occult blood positive
 - Palpable abdominal mass
 - Most common location: ileocecal junction
 - Radiographs consistent with intestinal obstruction
 - “Napkin ring” lesion on ultrasound exam

Histopathology

- Intestines, H&E

Intestinal Adenocarcinoma

- Pathology
 - "Napkin ring" lesion of intestine
 - Thickened intestinal wall with constriction of lumen
 - Well-differentiated, locally invasive, adenocarcinoma